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1

Tractability and Modern Satisfiability
Modulo Theories Solvers

1.1 Introduction

We discuss practice and theory of tractability of modern Satisfiability

Modulo Theories, SMT, solvers. Our starting point is research and ex-

periences in the context of the state-of-the art SMT solver Z3 [13], de-

veloped by the authors at Microsoft Research. We first cover a selection

of the main challenges and techniques for making SMT solving practi-

cal, integrating algorithms for tractable sub-problems, and pragmatics

and heuristics used in practice. We then take a proof-theoretical per-

spective on the power and scope of the engines used by SMT solvers.

Most modern SMT solvers are built around a tight integration with effi-

cient SAT solving. The framework is commonly referred to as DPLL(T ),

where T refers to a theory or a combination of theories. The theoreti-

cal result we present compares DPLL(T ) with unrestricted resolution. A

straight-forward adaption of DPLL(T ) provides a weaker proof system

than unrestricted resolution, and we investigate an extension we call

Conflict Directed Theory Resolution as a candidate method for bridging

this gap. Our results apply to the case where T is the theory of equality.

Better search methods for other theories and their integration is a very

active area of current research.

As a starting point, we will first briefly recall connections between SAT

and SMT, connections between the solving methods used for SAT and

SMT, and a short survey of some current applications of SMT solvers.

1.1.1 From SAT to SMT

SMT solving extends propositional satisfiability, a.k.a. SAT. The goal of

SAT is to decide whether formulas over Boolean variables, formed using

3



4 Tractability and Modern Satisfiability Modulo Theories Solvers

logical connectives, are satisfiable by choosing a truth assignment for its

variables. LB: Let’s keep in mind to add a reference to the planned chap-

ter on SAT SMT solvers allow a much richer vocabulary when creating

formulas. Besides Boolean variables, formulas may contain general rela-

tions, such as equalities between terms formed from variables, free (un-

interpreted) functions, and interpreted functions. The goal of SMT is to

decide whether formulas over the richer SMT vocabulary are satisfiable

by choosing an interpretation to the free variables and free functions of

the formula. The theories provide the meaning for the interpreted func-

tions. For example, the theory of arithmetic is commonly used in the

context of SMT, and efficient solvers for arithmetic and other theories

can be used to solve (arithmetical) constraints.

1.1.2 From DPLL to DPLL(T )

Modern SMT solvers have over the last decade relied on advances in

modern SAT solvers. Not only is propositional satisfiability a special

case of SMT, but a SAT solver based on the Davis-Putnam-Logeman-

Logemann (DPLL) architecture [9] can be extended with theory solvers.

Advances in SAT solvers include a better understanding of how to per-

form case splitting and learning useful lemmas during search using con-

flict directed clause learning. Section 1.5 recalls the DPLL(T ) calculus

and contains an abstract account for conflict directed clause learning.

As we elaborate on below, one theoretical explanation for the efficiency

of DPLL-based SAT solvers with conflict directed clause learning is the

fact that it can simulate general resolution using at most a polynomial

space overhead. On the other hand, DPLL search is more efficient: unit

propagation corresponds to resolution, but unlike resolution, DPLL does

not need to construct new clauses during propagation. There is so far

no corresponding results in the context of SMT solvers. In fact solvers

based on the architecture coined as DPLL(T ) are exponentially worse

off than resolution, even for the theory T of equality.

The connections between general resolution proofs and modern DPLL

solvers have been the subject of several studies. It was shown in [28] that

a DPLL calculus could be augmented with lemma learning to polyno-

mially simulate unrestricted resolution 1. In a quite similar context such

clauses have been called noogoods in [42]. Modern DPLL-based SAT

solvers are based on the conflict learning schemes introduced by the

1 The terminology unrestricted resolution means that there are no ordering
requirements or imposed strategies, such as the set of support strategy.
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GRASP system [41]. GRASP uses a tight coupling of BCP (Boolean

Constraint Propagation) by analyzing an implication graph for generat-

ing conflict clauses. The scheme is known as an asserting clause learning

scheme. More recently it was shown that propositional DPLL with as-

serting clause learning schemes and restarts p-simulates general resolu-

tion proofs [36]. The notion of p-simulation comes from Karp reduction:

If a proof in a formal system F1 can be reduced to a proof in system

F2 using at most a polynomial space increase, then F2 p-simulates F1.

We write F1 ≡p F2 if F1 and F2 can be reduced to each other. Their re-

sult strengthens several previous results [2, 7, 24] on connecting modern

DPLL search with unrestricted resolution.

The state for SMT solvers is much less advanced. Progress in modern

DPLL-based SAT solvers inspired developing efficient and scalable SMT

solvers by plugging in theory solvers in a modular way. But it is well

known that DPLL(T ), and the realization of DPLL(T ) in modern SMT

solvers can be exponentially worse than general resolution systems, and

various ad-hoc solutions, such as extending DPLL(T ) [3] and exploring

alternatives to DPLL(T ) have been examined.

We will later develop an approach that we call conflict directed theory

resolution to equip DPLL(T ) with the ability to compete with general

resolution systems. We examine the theory of equality in detail. This

theory is fundamental in SMT solvers; formulas from several other the-

ories can be reduced to formulas using only the theory of equality.

1.1.3 Applications

Thanks to technological advances and the ability to directly handle use-

ful theories, SMT solvers are of growing relevance in the context of soft-

ware and hardware verification, type inference, static program analy-

sis, test-case generation, scheduling, planning and graph problems. Con-

versely, many features and optimizations in SMT solvers, such as Z3 [13],

are based on the needs of applications. We cannot survey all applications

here. We refer to [16] for more details. One important use is dynamic

symbolic execution tools. They are used for generating inputs to unit

tests and they can directly be used to expose bugs in security critical

code. There are several tools, including CUTE, Exe/Klee, DART, Pex,

SAGE, and Yogi [23]. These tools collect explored program paths as for-

mulas and use SMT solvers to identify new test inputs that can steer

execution into new branches. SMT solvers are a good fit for symbolic ex-

ecution because the semantics of most program statements can be easily



6 Tractability and Modern Satisfiability Modulo Theories Solvers

modeled using theories supported by these solvers. The constraints gen-

erated from the tools are mostly conjunctions, but these can in principle

still be as intractable as general formulas. Another important area is

for static program analysis and verification tools. The ability to handle

theories that are used in programming languages is also important here.

1.1.4 Outline

The rest of the chapter is structured into two parts. Sections 1.2-1.4

provide an introduction to tractability and SMT solving. The remainder

provides a technical treatment of SMT solving for the theory of equality,

which plays a central role in SMT.

Section 1.2 introduces SMT by an example. We then survey theories

that are commonly used in SMT solvers in Section 1.3; some theories are

tractable for conjunctions of atomic constraints, others are intractable,

either NP hard or undecidable. Theoretical limits are not the only factors

in SMT solvers. Section 1.4 discusses some practical features in SMT

solvers that are useful for dealing with complexity.

Section 1.5 presents the main engine in modern SMT solvers as an

abstract transition system. We also present a decision procedure for the

theory of equality as an abstract inference system in Section 1.6. Al-

ternatively, one can eliminate the theory of equality entirely as shown

in Section 1.7; or adapt a hybrid scheme that applies to equalities un-

der function applications (Section 1.8) and transitivity of equality (Sec-

tion 1.9). Section 1.10 seeks a theoretical justification for the hybrid

scheme: the resulting proof system corresponds closely to a proof sys-

tem based on unrestricted resolution. We summarize the chapter in the

conclusions 1.11.

1.2 SMT - an Appetizer

We will introduce three theories used in SMT solvers using the following

example:

b+ 2 ≃ c ∧ f(read(write(a, b, 3), c− 2)) 6≃ f(c− b+ 1).

The formula uses an un-interpreted function symbol f and the theories of

arithmetic and arrays. The theory of arrays was introduced by McCarthy

in [31] as part of forming a broader agenda for a calculus of computation.

In the theory of arrays, there are two functions read and write. The
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term read(a, i) produces the value of array a at index i, while the term

write(a, i, v) produces an array, which is equal to a except for possibly

index i which maps to v. These properties can be summarized using the

axioms:

∀i v a (read(write(a, i, v), i) ≃ v) (1.1)

∀i j v a (i 6≃ j → read(write(a, i, v), j) ≃ read(a, j)) (1.2)

They state that the result of reading write(a, i, v) at index j is v for

i ≃ j. Reading the array at any other index produces the same value as

read(a, j).

On the other hand, the only thing we know about the un-interpreted

function f is that for all t and s, if t ≃ s, then f(t) ≃ f(s) (congruence

rule). The congruence rule holds for both interpreted and un-interpreted

functions and relations. It implies that formulas remain equivalent when

replacing equal terms. The example formula is unsatisfiable. That is,

there is no assignment to the integers b and c and the array a such

that the first equality b + 2 ≃ c holds and at the same time the second

disequality also is satisfied. One way of establishing the unsatisfiability

is by replacing c by b+ 2 in the disequality, to obtain the equivalent

b+ 2 ≃ c ∧ f(read(write(a, b, 3), b+ 2− 2)) 6≃ f(b+ 2− b + 1),

which after reduction using facts about arithmetic becomes

b+ 2 ≃ c ∧ f(read(write(a, b, 3), b)) 6≃ f(3).

The theory of arrays implies that the nested array read/write functions

reduce to 3 and the formula becomes:

b+ 2 ≃ c ∧ f(3) 6≃ f(3).

The congruence property of f entails that the disequality is false. As

the example indicates, a main challenge in SMT solvers is to efficiently

integrate a collection of theory solvers. The solvers cooperate checking

satisfiability of formulas that can mix several theories. Formulas are also

in general built from conjunctions, disjunctions, negations and other

logical connectives, so the solvers are also required to work efficiently

with logical formulas.

Most modern SMT solvers employ theory solvers that work with con-

junctions of atomic constraints over the theory. So the theory solvers typ-

ically do not have to worry about propositional search. The propositional

search is taken care of by state-of-the-art methods for propositional sat-

isfiability. Section 1.5 contains a formal presentation of the most widely
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used integration. Important capabilities of solvers in this context in-

clude handling incremental addition and deletion of constraints and to

efficiently propagate truth assignments. We here mostly discuss solving

quantifier-free formulas, but integrating reasoning for quantified formu-

las is also of high importance for applications of SMT solvers.

1.3 Tractable and Intractable Theories

As exemplified in the previous section, theories provide the meaning of

a collection of functions and relations. Formally, a theory is defined by a

signature that defines the domains, functions and relations of the theory

and a set of interpretations of the relations and functions. We also sug-

gested that theory solvers deal with conjunctions of atomic constraints

over the theory. In the following let us examine some common theories

and recall the complexity of solving conjunctions of atomic constraints.

1.3.1 Tractable Theories

We first recall the theories of equality and theory of linear real arithmetic

that are tractable.

Example 1 [UF - Equality and Free Functions] UF is really best char-

acterized as the empty theory. The signature comprises of functions and

relations that are un-interpreted. In other words, the functions are not

given any interpretation or constrained a priori in any other way. The

only properties that hold are that equality ≃ is an equivalence relation

and each function f (henceforth for simplicity assumed binary) respects

congruences. In other words, if f is applied to equal arguments, then the

results are equal. These properties are common to all terms, whether

they belong to a proper theory or not. They can be characterized as the

set of inference rules:

v ≃ v′, u ≃ u′

f(u, v) ≃ f(u′, v′)

u ≃ v, v ≃ w
u ≃ w

u ≃ v
v ≃ u v ≃ v (1.3)

Checking a conjunction of equalities and disequalities for satisfiability

is tractable. The Downey-Tarjan-Sethi congruence closure algorithm [18]

forms the basis of an O(n logn) algorithm for checking satisfiability,

where n is the number of sub-terms in the conjunction.
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A theory that is axiomatized using groundHorn-clauses is also tractable

with respect to satisfiability of conjunctions of equalities and disequal-

ities. An example Horn clause is f(a, b) ≃ c ∧ f(b, a) ≃ d → f(a, a) ≃

f(c, d). It has at most one positive equality and other equalities are

negated. The polynomial saturation algorithm is obtained by using con-

gruence closure as a sub-routine. Whenever the current set of equalities

make all antecedents in a Horn-clause true, then the consequent equality

is asserted. Section 1.7 presents an alternative construction, the Acker-

mann reduction, that shows Horn equalities to be tractable: it reduces

Horn clauses with equality to propositional Horn clauses.

The theory of (Horn) equality is also known to be a convex theory [34].

Convex theories enjoy the property that if a conjunction of constraints

imply a disjunction of equalities, then at least one of the equalities is

already implied. LRA, described next, is also convex.

Example 2 [LRA - Linear arithmetic over the Reals] The signature of

LRA is given by the domain R of reals, relations ≤, <,≥, >,≃. The

equality relation ≃ is automatically contained in every theory. There is

a constant r for every real number R. The operations are addition +,

subtraction −, and multiplication by a constant r.

An example unsatisfiable conjunction of inequality constraints is x ≤

y + 1 ∧ y ≤ z + 1 ∧ z < x− 7
3 .

Satisfiability of conjunctions of inequalities can be reduced to linear

programming feasibility. Thus, convex optimization techniques, such as

Simplex and interior point methods, can be used to check for satisfiability

of conjunctions of constraints.

Many modern SMT solvers use Dual Simplex [19] with support for

efficient backtracking for LRA. A special case is when every constraint

is of the form x−y ≤ r: they contain two variables with unit coefficients

1 and −1. This case, a.k.a. difference logic, can be solved using efficient

shortest path network algorithms, such as the Floyd-Warshall or the

Ford Fulkerson algorithm [38, 39].

1.3.2 Intractable Theories

Many useful theories are intractable, even for conjunctions of atomic

constraints. These include the theory of arrays, algebraic data-types,

arithmetic involving integers and multiplication.

Example 3 [A - Arrays] The theory of arrays as formulated with for-

mulas (1.1) and (1.2) is known as the theory of non-extensional arrays.
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Checking conjunctions of equality and inequality constraints for satisfi-

ability in this theory is NP hard. Take for instance a clause C1: (a∨¬b).

We will use the array M to encode a propositional model, and for each

clause Ci use a corresponding array to encode selecting a literal that

evaluates to true in the model. In the context of the single clause, the

formula looks as follows:

M ≃ write(write(write(write(M ′, ℓa, va), ℓb, v b), ℓa, va), ℓb, v b
)

va 6≃ va, v b 6≃ v
b
, distinct(ℓa, ℓb, ℓa, ℓb)

read(M, sel1) ≃ 1 6≃ read(M ′, sel1)

C1 ≃ write(write(C′
1, ℓa, va), ℓb, v b

)

read(C1, sel1) ≃ 1 6≃ read(C′
1, sel1)

We have used the shorthand distinct(t1, . . . , tn) for
∧

1≤i<j≤n ti 6= tj .

The last line of the encoding ensures that the index sel1 selects a lit-

eral from the clause C1. Note that the disequality read(C1, sel1) 6≃

read(C′
1, sel1) ensures that sel1 has to be one of the literals used to

update C′
1. The same literal is selected from M , and the value vℓ asso-

ciated with that literal is 1. We can add more clauses to this encoding

using a similar style as for C1. The disequalities on the values vℓ as-

sociated with literals ensures that clauses are satisfied using the same

assignment to the literals.

So what should a solver for the theory of arrays do about this? The

approach we take in Z3 is to reduce the theory of arrays to the theory

UF of uninterpreted functions [14]. The main idea of the reduction is

to instantiate the array axioms (1.1) and (1.2) with instances that come

from the formula being checked. There is a complete instantiation strat-

egy for the theory of arrays that guarantees that a formula is satisfiable

in the theory A of arrays if and only if the instantiation is satisfiable in

UF . The size of the instantiated formula grows quadratically with the

size of the original formula. Furthermore it introduces disjunctions, so

unfortunately the efficient algorithms for checking conjunctions of atoms

in UF cannot be applied alone. Heuristics are used to reduce the size

of the resulting formula, and reduce the number of instantiations with

disjunctions.

The non-extensional theory does not equate arrays that are equal with

respect to read . The axiom of extensionality can be added and enforces

these equalities:

∀a b ((∀δab read(a, δab) ≃ read(b, δab)) → a ≃ b) (1.4)
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The practical implications of adding extensionality incur a significant

performance penalty in practice: in the limit, a satisfiable model has to

determine whether each pair of array terms a, b can be distinguished

using some index δab. Good heuristics that avoid comparing arrays for

equality when it is irrelevant, are therefore critical in this context.

The terminology reduction approach was used by Kapur and Zarba

in [26]. They survey several theories, including some mentioned here,

whose decision problems can be reduced to UF .

Example 4 [CAL] Combinatory Array Logic [14] is an extension of the

base theory extensional of arrays. Besides write and read , it admits func-

tions const and for every function f there is a function mapf . The term

const(v) is an array that evaluates to v on every index, and mapf (a, b)

has the same arity as f (in this example f is binary), and maps f on the

range of a, b. In other words, we have the axiomatic characterization:

∀i v (read(const(v), i) ≃ v) (1.5)

∀i a b (read(mapf (a, b), i) ≃ f(read(a, i), read(b, i))) (1.6)

CAL is also reducible to UF by instantiating the theory axioms. It is

tempting to also add an identity array combinator “id” with the prop-

erty read(id , x) ≃ x, satisfiability of the resulting decision problem for

quantifier free formulas over this theory is highly intractable: it is unde-

cidable.

Example 5 [D - Algebraic Data-types] The quintessential algebraic

data-type is the theory of pure LISP S-expressions. There are two con-

structors cons and nil. Everything that is a pure S-expression is either

a cons or the constant nil, but not both. Terms that are cons are

uniquely decomposed into a car (head) and a cdr (tail) portion. These

are again S-expressions. Inductive data-types furthermore have to be

well-founded. They correspond to finite trees. The first-order theory of

(first-order) algebraic data-types was shown decidable by Malcev [29].

It comes with a non-elementary complexity: the complexity of the deci-

sion problem is a tower of exponentials, where the height of the tower is

given by the number of alternations of quantifiers. Oppen [35] developed

efficient algorithms for ground satisfiability for a theory of S-expressions

when it can be assumed that car(nil) = nil = cdr(nil). Without

this assumption, the decision complexity of quantifier-free conjunctions

of equalities and disequalities of data-type constraints is NP complete.
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Tractability also gets lost when considering other kinds of data-types

than S-expressions.

In Z3, the theory of algebraic data-types is, just like the theory of

arrays, also be reduced to UF by adding enough instantiations of first-

order axioms. To ensure well-foundedness the decision procedure per-

forms unification-style occurs checks and adds axioms whenever the

check fails.

Example 6 [LIA - Linear integer arithmetic] Linear arithmetic over

the domain of integers is also decidable, but this time satisfiability of

conjunctions of inequalities is already well known to be NP complete [22].

Example 7 [NRA - Non-linear real arithmetic] Non-linear arithmetic

over the reals admits multiplication between arbitrary terms, not just

multiplication by constants. For example, the formulas x·x < 0 is clearly

unsatisfiable because every square is non-negative. NRA formulas with

quantifiers are decidable using Collin’s Cylindric Algebraic Decomposi-

tion algorithm [8] or Cohen-Hörmander’s sign-based algorithm [27]. The

theory is intractable, though still decidable. Designing practically effi-

cient decision procedures, even for quantifier free formulas, is an ongoing

challenge.

Example 8 [NIA - Non-linear integer arithmetic] Non-linear arithmetic

over the integers is already undecidable for Diophantine equations (Hilbert’s

tenth problem) [30], and Gödel’s celebrated incompleteness result for

arithmetic establishes that there is no recursive axiomatization when

adding quantifiers.

There are many other theories of relevance for SMT solvers. These

include theories of Boolean algebras (sets), multi-sets, strings and se-

quences, queues (sequences where you can add and remove elements from

both ends), regular languages, bit-vectors and lists and data-structures

with reachability predicates. The theoretical complexities for conjunc-

tions range from linear to highly intractable. The theory UF of un-

interpreted functions is a base theory that many other theories, such as

A, CAL and D, can be reduced to.
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1.4 Practice and Pragmatics

Theoretical tractability matters, but other factors have an even more

significant influence on what makes SMT solving feasible for problems

that come from applications. We discuss some here.

1.4.1 Simplification

In many situations, SMT solvers are supplied with formulas that are gen-

erated by a tool. The formulas often contain assertions that have nothing

to do with the main property. In other cases, assertions are equalities

that can be solved, and the solution allows to eliminate variables from

the search space. An important component of Z3 therefore comprises of

pre-processing simplification routines that reduce the assertions.

1.4.2 Polynomial factors matter

Consider the two numbers: 210 and 210
2

. A problem instance of size 10 is

solvable even if it is handled by a procedure that takes 210 milliseconds

(a second), but it is not solvable for a procedure that takes 210
2

mil-

liseconds (40,196,936,841,331,475,186 years). Of course, even algorithms

that are quadratic time are impractical when applied to inputs of modest

size. For example, using insertion sort on an array with 100,000 elements

is impractical. When combining two separate theory solvers for disjoint

signatures, SMT solvers need to exchange equalities between the two

solvers. With potentially one equality for every pair of terms there is a

quadratic worst case number of equalities to share. Model-based theory

combination [12] uses the fact that most theory solvers build and main-

tain partial models. Only equalities between terms that are equal in the

current partial model are shared. The worst case is still quadratic, but

the average case behavior we have observed on applications is far better.

1.4.3 Relevancy Propagation

Z3, similar to the Simplify theorem prover [17] and several other SMT

solvers, uses quantifier instantiation to convert formulas with quanti-

fiers into quantifier-free formulas that are handled by ground decision

procedures [10]. It uses terms from the quantifier-free assertions to pro-

duce new quantifier instances. Each new term may lead to additional

instantiations. So terms from sub-formulas that do not contribute to
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satisfiability can lead to an inhibiting large search space. Relevancy

propagation [11] keeps track of which truth assignments are essential

for determining satisfiability of a formula. Atoms that are marked as

relevant have their truth assignment propagated, while atoms that are

not marked as relevant do not participate in propagation and do not

contribute to quantifier instantiation. We found relevancy filtering use-

ful for quantified formulas, but there is a trade-off: for quantifier-free

formulas, it hides potentially useful lemmas.

1.4.4 Reducing Proof and Model Search

Quantified formulas often bind more than one variable. Even if we re-

strict the set of possible instantiations per quantified variable to a smaller

finite set, the number of possible instantiations of a quantifier grows

exponentially in the number of different quantified variables. The main

method used in SMT solvers for throttling quantifier instantiations is by

using patterns that control which instantiations are used. The patterns

can be used to enforce dependencies between instantiated variables.

A different mechanism with a related aim is to restrict the space of

interpretations of relations by using templates [15]. The idea is to replace

uninterpreted functions and relations by specializations that constrains

the set of possible interpretations. For example, we can replace the rela-

tion R(x, y, z) by the relation (R1(x, y)∧y ≃ z)∨(R2(x, z)∧x ≃ y). The

resulting formula could become unsatisfiable, but a search for satisfiable

instances is on the other hand simpler.

1.5 DPLL(T ) - a Framework for Efficient SMT
Solvers

As preparation for the theoretical treatment we will now describe the

algorithmic underpinnings of modern SMT solvers. Most modern SMT

solvers are built around the DPLL(T ) architecture that provides a tight

integration with efficient SAT solving. Figure 1.1 shows an abstract re-

construction of DPLL(T ).

It follows [21], with one difference: we include explicit transitions for

conflict resolution. The DPLL(T ) procedure is modeled as an abstract

transition system. There are two kinds of states. The search states are

of the form M ||F , where M is a partial assignment given as a stack of

literals, and F is a set of set of clauses. A clause is often referred to as
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Initialize =⇒ ||F F is a set of clauses

Decide M ||F =⇒ Mℓd ||F if

{

ℓ or ¬ℓ occurs in F
ℓ unassigned in M

Propagate M ||F,C ∨ ℓ =⇒ MℓC∨ℓ ||F,C ∨ ℓ if

{
ℓ unassigned in M

C ⊆ M

Conflict M ||F,C =⇒ M ||F, C ||C if C is false under M

Resolve M ||F ||C′ ∨ ¬ℓ =⇒ M ||F ||C ∨ C′
if ℓC∨ℓ ∈ M

Backjump Mℓd0M
′ ||F ||C ∨ ℓ =⇒ MℓC∨ℓ ||F, C ∨ ℓ if C ⊆ M,¬ℓ ⊆ ℓd0M

′

Restart M ||F =⇒ ||F

Unsat M ||F || ∅ =⇒ unsat

Sat M ||F =⇒ M if

{

M is T consistent
and is a model for F .

T -Propagate M ||F =⇒ MℓC∨ℓ ||F if







ℓ unassigned in M
ℓ or ¬ℓ occurs in F
T ⊢ C ∨ ℓ

C ⊆ M

T -Conflict M ||F =⇒ M ||F ||C if C ⊆ M , T |= C.

Figure 1.1 Abstract DPLL(T ) Procedure

C. It is a disjunction of literals that we refer to as ℓ (which is either an

atom p or a negation of an atom ¬p). The set C is obtained from a clause

C by negating all the literals in C. The conflict resolution states are of

the form M ||F ||C, where C is a conflict clause. We will later make use

these two kinds of states when formulating new rules.

Search starts with the Initialize rule that creates a state ||F . Search

proceeds by a sequence of decision and propagation steps until either

reaching a conflict or a satisfiable assignment. Conflicts trigger the con-

flict resolution rules to be applied. We use two kinds of annotations for

the literals in M . Literals annotated as ℓd are decision literals. They



16 Tractability and Modern Satisfiability Modulo Theories Solvers

are assigned by the Decide rule. Literals can also be annotated with a

clause, so they are of the form ℓ(C∨ℓ). The literal ℓ occurs positively in

the clause. These literals are added to M as a result of Propagate (or

T -Propagate). The clause is later used for conflict resolution. There are

two rules that distinguish DPLL(T ) from modern DPLL. These are the

T -Propagate and T -Conflict rules. The rules describe the main ways for

theories to integrate with DPLL. The T -Propagate rule lets theories par-

ticipate in unit propagation and T -Conflict lets theories determine when

a clause is conflicting under the partial assignment M and the theory

T . Note that the rules maintain the set of literals from the input F . It

is therefore easy to establish that DPLL(T ) is terminating (assuming

Restart is applied using a back-off).

The condition on Backjump is crucial. It captures how modern DPLL

solvers filter which clauses to learn, it is called an asserting scheme,

and at the same time provides a scheme for backtracking. It states that

there is precisely one literal ℓ in the clause C ∨ ℓ, forced false by

the last decision literal ℓd0. Some variations of these rules are possible.

For example, one can decouple clause learning from back-jumping, and

admit garbage collection of learned clauses.

Example 9 (A Derivation) To give a feel for DPLL(T ), let us prove

the following theorem:

f2a ≃ a ∧ f3b ≃ b ∧ a 6≃ f(a)
︸ ︷︷ ︸

M0

∧ (a ≃ b ∨ a ≃ c) ∧ (a 6≃ c ∨ f4a ≃ b)
︸ ︷︷ ︸

F

where we used the abbreviation f2a for f(f(a)). We have indicated a

state M0 ||F that is obtained by including the unit-literals in the partial

model M0. We continue a derivation by

M0 ||F

=⇒ {Decide on a ≃ b}

M0(a ≃ b)d ||F

=⇒ {T -Conflict}

M0(a ≃ b)d ||F || f2a ≃ a ∧ f3b ≃ b ∧ a ≃ b → a ≃ f(a)
︸ ︷︷ ︸

C1

=⇒ {Backjump}

M0(a 6≃ b)C1 ||F,C1

=⇒ {Propagate}

M0, (a 6≃ b)C1 , (a ≃ c)(a≃b∨a≃c) ||F,C1
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=⇒ {Propagate}

M, (a 6≃ b)C1 , (a ≃ c)(a≃b∨a≃c), (f4a ≃ b)(a 6≃c∨f4a≃b)

︸ ︷︷ ︸

M1

||F,C1

=⇒ {T -Conflict}

M1 ||F,C1 || f
2a ≃ a ∧ f3b ≃ b ∧ f4a ≃ a → a ≃ f(a)

=⇒ {Resolve with (f4a ≃ b)(a 6≃c∨f4a≃b)}

M1 ||F,C1 || f
2a ≃ a ∧ f3b ≃ b ∧ a ≃ c → a ≃ f(a)

=⇒ {Resolve with (a ≃ c)(a≃b∨a≃c)}

M1 ||F,C1 || f
2a ≃ a ∧ f3b ≃ b → a ≃ b ∨ a ≃ f(a)

=⇒ {Resolve with (a 6≃ b)C1}

M1 ||F,C1 || f
2a ≃ a ∧ f3b ≃ b → a ≃ f(a)

=⇒ {Resolve with M0}

M1 ||F,C1 || ∅

=⇒ Unsat

1.6 Abstract Congruence Closure

We introduced the theory UF of equality in Example 1. Let us here

present an abstract decision procedure for it.

Efficient congruence closure algorithms [18, 17, 33] compute the set of

all implied equalities from a basis of asserted equalities by maintaining

the coarsest equivalence relation ∼ that is closed under asserted equal-

ities and the congruence rule. The rule Assert in Figure 1.2 encodes an

asserted equality as a state that contains a node definition r ≡ (u ≃ v)

and asserted literal r. The congruence rule Cong is triggered whenever

there are two nodes labeled by the same function f or relation and whose

children are equivalent. Only parents of nodes whose equivalence class

are updated need to be processed. Therefore, efficient implementations

of this rule index each node by the sets of parent nodes where they occur.

The other rules Trans and Sym are triggered implicitly by maintaining

∼ in a union-find data-structure.

To simplify notation we used a binary function f to represent arbitrary

n-ary functions. It is of course possible to literally replace n-ary functions
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r ≡ (u ≃ v); r
Assert u ∼ v

w ≡ f(u, v), w′ ≡ f(u′, v′);
v ∼ v′, u ∼ u′

Cong
w ∼ w′

u ∼ v, v ∼ w
Trans u ∼ w

u ∼ v
Sym v ∼ u

Figure 1.2 Abstract Congruence Closure

by n− 1 binary functions and work entirely with binary functions, but

our results do not use any special assumptions about binary functions.

1.7 The Ackermann Reduction

The Ackermann reduction lets us reduce the theory of equality to the

theory of purely propositional logic. We describe a basic Ackermann

reduction scheme here. The Ackermann reduction can also be seen as a

basis of the optimizations we pursue in later sections.

For a fixed set of terms and their sub-terms, u1, u2, . . . , uN there is

a finite number of ways one can apply the congruence closure rules to

derived implied equalities. It is therefore straight-forward to compile

the congruence closure rules into a set of clauses using O(N2) auxiliary

equality predicates. The procedure ackermannize eliminates the function

symbol f from a set of formulas F :

ackermannize(f, F ) :

foreach f(u, v) ∈ F where u, v do not contain f

create a fresh constant af(u,v)
replace f(u, v) by af(u,v) in F

foreach af(u,v), af(u′,v′)

add the clause u ≃ u′ ∧ v ≃ v′ → af(u,v) ≃ af(u′,v′) to F

Compilation allows reducing the theory UF for quantifier-free formu-

las to the theory of pure equalities or all the way to propositional SAT.

Many optimizations to the basic Ackermann reduction have been pro-

posed and used over the years, including, [5, 6, 32, 37, 4].

Let us just notice a trivial optimization here: we can avoid the sym-

metry rule by normalizing all equalities to the form ui ≃ uj where

1 ≤ i < j ≤ N . The clauses added by the Ackermann reduction are then
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of the form:

u ≃ u′ ∧ v ≃ v′ → af(u,v) ≃ af(u′,v′) Cong (1.7)

u ≃ v ∧ v ≃ w → u ≃ w Trans (1.8)

Ackermannization has the disadvantage as the number of additional

literals is in the worst case quadratic in the size of the input. It is further-

more a problem to eliminate function symbols using Ackermannization

when the same function symbols could be re-introduced to the search

space when quantifiers are instantiated incrementally during search.

1.8 Dynamic Ackermann Reduction

Section 1.6 presented an abstract account of a congruence closure based

decision procedure for equality. It can be plugged into the DPLL(T )

framework as a theory solver. Section 1.7 took a different perspective

on the theory of equality; it presented a reduction to pure equalities

(without function symbols) or propositional SAT.

Nevertheless, Ackermann reduction has the advantage of admitting

exponentially shorter refutations than a DPLL(T ) integration of congru-

ence closure. The following formula has a short DPLL refutation after

an Ackermann reduction, but does not have a short proof in DPLL(T ).

N∧

i=1

(pi ∨ xi ≃ v0) ∧ (¬pi ∨ xi ≃ v1) ∧ (pi ∨ yi ≃ v0) ∧ (¬pi ∨ yi ≃ v1)

∧ f(xN , . . . , f(x2, x1) . . .) 6≃ f(yN , . . . , f(y2, y1) . . .) (1.9)

In [20], an approach, called Dynamic Ackermannization, is proposed to

cope with this problem. There, clauses corresponding to Ackermann’s

reduction are added when a congruence rule participates in a conflict.

We can formulate the Dynamic Ackermann reduction as an inference

rule that gets applied during conflict resolution.

Dyn. Cong M ||F ||C =⇒

M ||F, (u ≃ u′ ∧ v ≃ v′ → f(u, v) ≃ f(u′, v′)) ||C

subject to a suitable filter that throttles its use.

(*) if the congruence rule is applied - repeatedly - to the premises

u ≃ u′ ∧ v ≃ v′ and conclusion f(u, v) ≃ f(u′, v′), such that

f(u, v), f(u′, v′) occur in C.
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This filter ensures that no new terms are introduced, but it may still

introduce new equalities for either u ≃ u′, v ≃ v′ or f(u, v) ≃ f(u′, v′).

We will in the following use a stronger filter and call the rule associated

with the stronger filter Dyn. Cong♯. The stronger filter requires:

Dyn. Cong♯ M ||F ||C =⇒

M ||F, (u ≃ u′ ∧ v ≃ v′ → f(u, v) ≃ f(u′, v′)) ||C

if (*) and f(u, v) ≃ f(u′, v′) ∈ C

Dynamic Ackermannization allows DPLL(T ) solvers to find short proofs

for formulas, such as (1.9), but are not sufficient for DPLL(T ) to find

short proofs in cases where full Ackermann reduction applies. In the fol-

lowing, we describe a formula that remains hard, even in the context

Dynamic Ackermann reduction.

1.9 The Price of Equality

Dynamic Ackermann reduction has advantages when used on formulas

such as (1.9), but there are formulas with equality where DPLL(UF )

still suffers from being incapable of generating short proofs. Consider

the unsatisfiable formula (1.10) (and illustrated in Figure 1.3) also used

in [37].

a1 6≃ a50 ∧
49∧

i=1

[(ai ≃ bi ∧ bi ≃ ai+1) ∨ (ai ≃ ci ∧ ci ≃ ai+1)] (1.10)

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4 · a49

b49

c49

a50

Figure 1.3 Diamond equalities

The formula is unsatisfiable because in every diamond, it is the case

that ai ≃ ai+1 because either ai ≃ bi ∧ bi ≃ ai+1 or ai ≃ ci ∧ ci ≃ ai+1.

Therefore, by repeating this argument for every i, we end up with the

implied equality a1 ≃ a50. This contradicts the disequality a1 6≃ a50. A

proof search method directly based on DPLL(UF ) is not able to produce

a succinct proof like the informal justification just given. Each of the
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equalities ai ≃ bi, bi ≃ ai+1, ai ≃ ci, ci ≃ ai+1 and a1 ≃ a50 is treated as

an atom. The atoms ai ≃ ai+1 are not present and DPLL assigns truth

values only to the existing atoms. So a decision procedure for equalities

detects a contradiction only when for every i = 1, . . . , 49 ai ≃ ai+1

follows from either ai ≃ bi ∧ bi ≃ ai+1 or ai ≃ ci ∧ ci ≃ ai+1. There are

249 different such equality conflicts, none of which subsumes the other.

There is no short unsatisfiability proof that uses only the atoms in the

original formula.

Yices and Z3 [3] include a method that uses the Join rule to propagate

equalities.

Mpd ||F =⇒ M1 ||F M¬pd ||F =⇒ M2 ||F

p is the only decision variable in M1,M2
Join

M ||F =⇒ M1 ⊔M2 ||F

The rule Join allows for splitting on a single atom p. The implied

consequences of the different cases for p are then combined. We say that

this approach uses one look-ahead. It bears similarities to the dilemma

rule [40] known from SAT. One look-ahead is not always sufficient for

learning the right implied facts. The join rule is also applied at the base

level, that is, when M does not contain any decision variables. The new

atoms are then not used in case splits. Consider a simple extension of the

diamond problem given in equation (1.11), and illustrated in Figure 1.4.

a1 6≃ a50 ∧
49∧

i=1





(ai ≃ bi ∧ bi ≃ ai+1)

∨ (ai ≃ ci ∧ ci ≃ ai+1)

∨ (ai ≃ di ∧ di ≃ ai+1)



 (1.11)

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4 · a49

b49

c49

d49

a50

Figure 1.4 Double Diamond equalities

The Join rule is ineffective at finding short proofs for this and many

other cases.

Following the style of dynamic Ackermann reduction we can formulate

a rule that does introduce useful lemmas and literals for such cases. We

call the rule Dyn. Trans:
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C ∨ a ≃ b D ∨ ℓ[a]
Sup

C ∨ D ∨ ℓ[b]
C ∨ ℓ D ∨ ℓ

Res
C ∨D

C ∨ a 6≃ a
E-Dis

C

C ∨ ℓ ∨ ℓ
Factor

C ∨ ℓ

C ∨ a ≃ b ∨ a ≃ c
E-Eqs

C ∨ a ≃ b ∨ b 6≃ c

Figure 1.5 E-Res: Ground E-resolution calculus

Dyn. Trans M ||F ||C =⇒

M ||F, (u ≃ v ∧ v ≃ w → u ≃ w) ||C u 6≃ v, v 6≃ w ∈ C

1.10 Conflict Directed Equality Resolution

We have identified two problems with DPLL(UF ) where it is unable to

find short proofs, and we have presented two rules Dyn. Trans and Dyn.

Cong♯ that overcome the problems. They introduce new literals, but use

a throttle based on conflict resolution to limit the set of new literals.

How effective are our additions to DPLL(UF )?

To characterize it, we will recall an unrestricted calculus for equality

resolution, called E-Res. The purpose of this section is to establish that

E-Res ≡p DPLL(UF ) + Dyn. Cong♯ + Dyn. Trans.

In other words, DPLL(UF ) augmented with the two rules for dynami-

cally adding clauses p-simulates resolution style proof systems for quantifier-

free equality.

Figure 1.5 shows a ground E-resolution calculus, E-Res. In contrast to

super-position calculi for non-ground clauses there are no ordering filters

to reduce the set of rule applications. The rules can be applied without

ordering filters. This makes the proof system more liberal than ordered

super-position calculi, the search space is much bigger, but it admits

proofs where the ordered version requires exponential more space [3].

1.10.1 Analysis

Our plan is to simulate E-Res. We first establish that every literal used

in an E-Res proof can be produced using a polynomial overhead using

the calculus obtained from using congruence closure as a theory solver

+ Dyn. Cong♯ + Dyn. Trans. We call this calculus CDER (for conflict
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directed equality resolution). Our results will be established relative to

an assumption that is required for our analysis:

Assumption 1 Every derivation in E-Res using only unit clauses can

be produced as a T -Conflict by CDER.

In other words, whenever there is an E-Res proof of a conflict using a set

of equalities and one disequality, then that same set, and not a subset,

is produced by CDER as a conflict clause. Second, we establish that

every E-Res proof can be converted into a propositional resolution proof

with at most a polynomial overhead. Third, we apply already established

results on how DPLL+CL+Restarts p-simulate unrestricted resolution.

The relevant propositions are summarized as follows:

Proposition 1 Given an E-Res proof Π, then every literal that occurs

in Π can be produced from either the input clauses ∆ or using a poly-

nomial number of applications of CDER deriving clauses ∆′ that imply

the additional literals.

Proposition 2 Given an E-Res proof Π, there is a proof Π′ of size poly-

nomial in Π whose support is ∆ ∪∆′ that uses only resolution.

Proposition 3 ([36]) For any asserting scheme, DPLL+CL+Restarts

p-simulates unrestricted resolution.

Let us note that these results rely on heuristics for controlling variable

splitting, restarts and when to apply the resolution rules for guiding the

proof search. Searching for proofs is still hard in worst case [1].

We will now establish the first two propositions. Let Π be an E-Res

proof of the empty clause, then we will establish that every literal that

occurs in a clause Π is eventually removed. Let Π′ be a sub-tree of Π

that introduces the literal ℓ (there could be more than one, but we can

consider one at a time). We will first establish that for an inference rule

that introduces a fresh literal in Π there is a sequence of theory conflict

resolution steps that (1) produce the new literal, (2) allow replacing the

inference rule by propositional resolution. In this context consider the

rules Res and E-Dis as the ones that are responsible for removing literals.

Given an inference with sub-tree Π′ we will define a core set of literals

that can be used to produce the literal introduced by Π′.

Definition 1 (Literal core) Given a sub-tree Π′, define:

core (π, ℓ,Π)Π′ = ∅ if Π = Π′
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Otherwise,

core
(

π, ℓ,
C ∈ ∆

C

)

Π′

= {πℓ}

core



π, ℓ[b],

Π1

C ∨ a ≃ b

Π2

D ∨ ℓ[a]

C ∨ D ∨ ℓ[b]





Π′

=

core
(

+, a ≃ b,
Π1

C ∨ a ≃ b

)

Π′

∪ core

(

π, ℓ[a],
Π2

D ∨ ℓ[a]

)

Π′

core

(

+, b 6≃ c,
Π

C ∨ a ≃ b ∨ a ≃ c
C ∨ a ≃ b ∨ b 6≃ c

)

Π′

=

core
(

+, a ≃ b,
Π

C ∨ a ≃ b ∨ a ≃ c

)

Π′

∪

core
(

−, a ≃ c,
Π

C ∨ a ≃ b ∨ a ≃ c

)

Π′

core
(

π, ℓ,
Π1 Π2

ℓ ∨ C

)

Π′

=
(core (π, ℓ,Π1)Π′ | ℓ ∈ Π1)

∪ (core (π, ℓ,Π2)Π′ | ℓ ∈ Π2)

core

(

π, ℓ,
Π

ℓ ∨ D
ℓ ∨ C

)

Π′

= core
(

π, ℓ,
Π

ℓ ∨ D

)

Π′

Finally, let:

trail

(
Π1

C ∨ ℓ

Π2

D ∨ ℓ
C ∨D

)

Π′

=

core

(

+, ℓ,
Π1

C ∨ ℓ

)

Π′

∪ core

(

+, ℓ,
Π2

D ∨ ℓ

)

Π′

trail

(
Π

C ∨ a 6≃ a

C

)

Π′

= core

(

+, a 6≃ a,
Π

C ∨ a 6≃ a

)

Π′

Note that the rules for the ground resolution calculus introduce liter-

als. The rule Sup introduces the literal ℓ[b] and rule E-Eqs introduces the

literal b 6≃ c. A derivation Π′ that ends with Sup introduces the literal

ℓ[b]. A derivation Π′ that ends with E-Eqs introduces the literal b 6≃ c.

Lemma 1 Let ℓ be the literal introduced by the rule Π′ and let Π be the

corresponding descendant of Π′ that eliminates ℓ. The computation of

trail (Π)Π′ consists of recursive calls of the form core (π, ℓ′,Π′′)Π′ . For

any such recursive call:
∧

core (π, ℓ′,Π′′)Π′ ∧ ℓ → πℓ′
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Proof: The proof proceeds by induction over the calls to core with

measure |Π|. Let us illustrate the base cases and one case of induction.

The first base case is
∧
core (π, ℓ,Π′)Π′ ∧ ℓ → ℓ, since

∧
core (π, ℓ,Π′)Π′ =

∧
∅ = true. The second base case is when core

(

π, ℓ′,
C ∈ ∆

C

)

Π′

=

{πℓ′}. In this case the implication we need to establish is πℓ′ ∧ ℓ → πℓ′.

Now consider E-Eqs as an example,

∧
core

(

+, a ≃ b,
Π

C ∨ a ≃ b ∨ a ≃ c

)

Π′

∧ ℓ → a ≃ b

∧
core

(

−, a ≃ c,
Π

C ∨ a ≃ b ∨ a ≃ c

)

Π′

∧ ℓ → a 6≃ c

The conjunction of the two premises imply that b 6≃ c, which is what the

lemma requires.

Lemma 2 For every literal ℓ introduced by the rule Π′ there is a de-

scendant Π such that

ℓ, trail (Π)Π′ ⊢ false

Furthermore, if ℓ = ℓ[b], Π′ =

Π1

C ∨ a ≃ b

Π2

D ∨ ℓ[a]

C ∨ D ∨ ℓ[b]

, then

a ≃ b, ℓ[a], trail (Π)Π′ ⊢ false

and if ℓ = b 6≃ c, Π′ =
Π1

C ∨ a ≃ b ∨ a ≃ c
C ∨ a ≃ b ∨ b 6≃ c

, then

a ≃ b, a 6≃ c, trail (Π)Π′ ⊢ false

Proof: We first establish that ℓ ∧
∧
trail (Π)Π′ → false, by unfolding

the definition of trail . Lemma 1 implies that

ℓ ∧
∧

core

(

+, ℓ′,
Π1

C ∨ ℓ′

)

Π′

∧
∧

core

(

+, ℓ′,
Π2

D ∨ ℓ′

)

Π′

→ ℓ′ ∧ ¬ℓ′

and that

ℓ ∧
∧

core

(

+, a 6≃ a,
Π

C ∨ a 6≃ a

)

Π′

→ a 6≃ a

The antecedents are contradictory in both cases. The two other claims

in the lemma follow because ℓ[b] is implied by a ≃ b, ℓ[b] and b 6≃ c is

implied by a ≃ b, a 6≃ c.
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Lemma 2 implies that literals that are introduced by the rules Sup

and E-Eqs participate in an E-conflict. Proposition 1 is a consequence of

lemmas 1 and 2. We can now prove the next proposition.

Proof: [Of Proposition 2] Let us consider the inference rules that intro-

duce new literals and rewrite the inferences to propositional resolution

modulo lemmas produced from theory resolution.

Sup rewrites one side of an equality (the literal ℓ[a] is of the form a ≃ c

for some term c):

C ∨ a ≃ b D ∨ a ≃ c
C ∨ D ∨ b ≃ c

7→

C ∨ a ≃ b
a ≃ b ∧ a ≃ c → b ≃ c D ∨ a ≃ c

D ∨ a 6≃ b ∨ b ≃ c

C ∨ D ∨ b ≃ c

The required lemma a ≃ b ∧ a ≃ c → b ≃ c is produced by theory

resolution from the conflict that includes the two premises a ≃ b and

a ≃ c.

Sup rewrites a nested occurrence of a in a term that occurs in an equality

or disequality:

C ∨ a ≃ b D ∨ t[a] ≃ s

C ∨ D ∨ t[b] ≃ s
7→

C ∨ a ≃ b

a ≃ b → t[a] ≃ t[b] D ∨ t[a] ≃ s

D ∨ a 6≃ b ∨ t[b] ≃ s

C ∨ D ∨ t[b] ≃ s

C ∨ a ≃ b D ∨ t[a] 6≃ s

C ∨ D ∨ t[b] 6≃ s
7→

C ∨ a ≃ b

a ≃ b → t[a] ≃ t[b] D ∨ t[a] 6≃ s

D ∨ a 6≃ b ∨ t[b] 6≃ s

C ∨ D ∨ t[b] 6≃ s

Suppose t[a] is of the form f(f(a)), then we can apply congruence in

two stages. First by introducing the clause

f(a) ≃ f(b) → f(f(a)) ≃ f(f(b))

the second time the literal f(a) ≃ f(b) is used in a conflict core, and

then we introduce the implication

a ≃ b → f(a) ≃ f(b)
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This restricted way of applying congruence corresponds to the rule Dyn.

Cong♯.

Sup applied to an atomic disequality. The remaining Sup case we have

not handled is inferences of the form:

C ∨ a ≃ b D ∨ a 6≃ c

C ∨ D ∨ b 6≃ c

There is no version of Dyn. Trans that allows learning lemmas of the

form

a ≃ b ∧ a 6≃ c → b 6≃ c

We show that this rule is not necessary, by examining the inference steps

that involve b 6≃ c in the proof tree below. Let us first examine the case

where the derivation has the form:

E ∨ b ≃ d

C ∨ a ≃ b D ∨ a 6≃ c

C ∨ D ∨ b 6≃ c

...
F ∨ b 6≃ c′

E ∨ F ∨ d 6≃ c′

In this case a ≃ b∧ a 6≃ c∧ b ≃ d∧ trail (Π)Π′ is a theory conflict, where

Π′ is the derivation snippet given above. Rule Dyn. Trans lets us learn

the clause a ≃ b ∧ b ≃ d → a ≃ d, and we can rewrite the derivation to:

E ∨ b ≃ d

C ∨ a ≃ b a ≃ b ∧ b ≃ d → a ≃ d
C ∨ b 6≃ d ∨ a ≃ d D ∨ a 6≃ c

C ∨ D ∨ b 6≃ d ∨ d 6≃ c

...
F ∨ b 6≃ d ∨ d 6≃ c′

E ∨ F ∨ d 6≃ c′

The transformation is similar if the next inference that rewrites b mod-

ifies a proper sub-term of it.

E-Eqs also introduces a disequality literal. We can push applications of
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this rule down in the derivation tree using the following transformation:

E ∨ b ≃ d

C ∨ a ≃ b ∨ a ≃ c
C ∨ a ≃ b ∨ b 6≃ c

...
F ∨ b 6≃ c′

E ∨ F ∨ d 6≃ c′

7→

E ∨ b ≃ d a ≃ d ∧ b ≃ d → a ≃ b
E ∨ a ≃ b ∨ a 6≃ d

E ∨ b ≃ d C ∨ a ≃ b ∨ a ≃ c
E ∨C ∨ a ≃ d ∨ a ≃ c
E ∨ C ∨ a ≃ d ∨ d 6≃ c

E ∨ C ∨ a ≃ b ∨ d 6≃ c

...
E ∨ F ∨ d 6≃ c′

The transformation requires the clause b ≃ d ∧ a ≃ d → a ≃ b. It can

be learned using Dyn. Trans by first learning b ≃ d ∧ a ≃ b → a ≃ d,

as the original derivation ensures that b ≃ d ∧ a ≃ b participate in a

conflict. Then the helpful clause is learned from theory propagation on

the assignment b ≃ d ∧ a ≃ d.

Lemma 2 makes use of Assumption 1. The derivation below introduces

redundant literals c ≃ d and b ≃ d.

a ≃ b
b ≃ c

a ≃ d c ≃ a
c ≃ d

b ≃ d
a ≃ d f(a) 6≃ f(d)

f(d) 6≃ f(d)

⊥

Our proof does not let us disregard such non-minimal derivations.

Hence, the working assumption on the theory solver for equalities is that

it admits arbitrary equality conflicts, including non-minimal ones. This

is in contrast to how efficient congruence closure-based equality solvers

work. They seek minimal conflicts. It is an open problem to strengthen

the results to equality solvers that perform theory resolution based on

a minimal unsatisfiable set of literals. We conjecture that CDER still p-

simulates E-Res even when congruence produces only minimal conflicts.
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1.11 Conclusions

We exemplified howmodern SMT solvers combine algorithms for tractable

sub-problems in a framework that addresses intractable problem do-

mains. An important theme is to harness the size of the problem, since

the search space grows exponentially in the problem size. A common

trait in many methods was to delay polynomial space increase based

on properties of the search and partial models (for model-based theory

combination). In this context we examined a method for the UF theory

that can find short proofs in many cases at the expense of introducing

new literals. The new literals are introduced based on an analysis of

theory conflicts. We took a proof theoretic perspective and compared

the strength of the method relative to general unrestricted resolution

proof systems. The main point is that the two proof systems are equally

succinct.

Conflict Directed Theory Resolution is a general concept. The high-

level point is to integrate theory resolution steps as part of the conflict

analysis already performed by the DPLL(T ) engine. We analyzed it only

in the context of UF . With a reduction approach to theory solving, we

noticed that A, D, CAL all reduce to UF , so an efficient UF solver is

helpful in all these theories. It is fairly straight-forward to use the same

ideas for conflict directed theory resolution for difference logic (exam-

ple 2). The situation is more complex for LRA and especially LIA where

also proof rules for cutting planes are needed [25].
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